

同軸ケ

航空宇宙・防衛用 同軸ケーブル

- 1 目次
- 2 概要
- 3 同軸ケーブル一覧

高周波低ロス フレキシブルケーブル

- 5 MilTech®
- 7 MilTech® Light
- 9 MaxGain®
- 11 SpaceFlight (SPFLT/SPFLX)
- 13 HeliFoil

汎用フレキシブルケーブル

- 15 LMR®
- **17** TCOM®
- **19** M17/RG

細径フレキシブルケーブル

- 21 TFlex®
- 23 InstaBend®

位相安定ケーブル

- 25 PhaseTrack®
- 27 PhaseTrack® LS
- 29 PhaseTrack® SR

野外通信用 高耐久ケーブル

31 QEAM

耐熱/耐放射線ケーブル

33 SiO2

ハイパワーケーブル

- **35** HP
- **37** StripFlex® (SFT)

計測用ケーブル

39 Clarity™

コネクタ

- 41 セルフロックコネクタ
- 42 中間コネクタ (気密処理)
- 43 マルチポートコネクタ
- 44 ブラインドメイトアンテナシステム
- 45 ロータリーコネクタ

アンフェノールは、70年以上にわたり航空宇宙・防衛向けに同軸ケーブルを供給しており、MIL規格および高信頼性同軸ケーブルの トップサプライヤーとして高い評価を頂いています。

特に、高性能、高信頼性、高耐久性が要求される航空機および艦船のレーダ、EWシステム、衛星などのクリティカルなシステム では、多くのプログラムでアンフェノールの同軸ケーブルが採用されています。


本カタログでは、アンフェノールの数多いラインアップから、日本市場にもっともマッチした航空宇宙・防衛向け同軸ケーブルを厳選 してご紹介します。

- Air-to-Air
- Air-to-
- Ground • Anti-Missile • Ship Board

• Radar

• Ranger

- Classified Ship to Air • High-Temp • Vehicle Antennas
- Launched Hypersonic

• Scorpion

Seekers

• Nuclear

航空宇宙

• F-15

• F-16

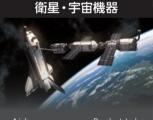
• F-35

• UH-1

• Gripen

• Typhoon

- ACES
- Apache
- C-130 • C-17
- F/A-18 • F/A-22
- F-111 • F-14



- COBRA JUDY
- Coachwhip • Crew
- Duke
- FCS • G/ATOR

• M1A1

• JLENs • JTRS

• MRAP/MATV

Airbus

Stryker

Warrior

• WIN-T

• Falcon

• JLTV

- Boeing • Honeywell
- Thales Alenia
- NASA/JPL
- OHB

▶主な認定プログラム

A-10 AGM-129A (ACM) AH-IS COBRA AH-64 APACHE AIRBUS A300

BOEING 747 BOEING 767 BOEING 767 BGM-109 (TLAM & TASM) C-17 C-130 C-160 CANADAIR

CESSNA 208

F-22 F-111 F-117 CN 235 CP-140 DD-963 DDG-51 DDG-51 DDG-51 E-2C EA-6H EF-111 EH-101 EH-IX F-14 F-15 F-16 F-16 F-18 GRIPEN HARRIER

JSF L-159 LAMPS LOCKHEED L-1011 LYNX McDONNELL DC-8 McDONNELL DC-9 McDONNELL DC-10 McDONNELL MD-10 McDONNELL MD-87 McDONNELL MD-88 McDONNELL MD-88

MH-47 MH-60 MIRAGE 2000-5 NIMROD MR4A

P-3C PILATUS PC-12 PPG-7 S-3 SOCATA TBM-700 SEA KING SH-60 BLACK HAWK TA-4 TORNADO V-22

ケーブルタイプ		高周波低ロス フレキシブルケーブル				汎用フレキシブルケーブル			
એ!	リーズ名	MilTech [®]	MilTech [®] Light	MaxGain [®]	SpaceFlight (SPFLT/ (SPFLX)	HeliFoil	LMR [®]	TCOM [®]	M17/RG
~	ージ数	P5	P7	P9	P11	P13	P15	P17	P19
	宇宙衛星				0				
	防衛機体	0	0						
主要用途	野外通信/ 地上レーダシステム			0		0	0	0	
工女用应	護衛艦/潜水艦						0		0
	屋内			0		0	0	0	0
	機器内								
	種類	フレキシブル	フレキシブル	フレキシブル	フレキシブル	フレキシブル	フレキシブル	フレキシブル	フレキシブル
	動作温度範囲(℃)	−55℃~ +200℃	-55℃~ +200℃	−55℃~ +150℃	-150℃~ +150℃	-55℃~ +150℃	-40℃~+85℃	-40℃~+85℃	規格要求に よる
ケーブル仕様	最大使用周波数 (GHz)	18	18	50	18	80	8	10	規格要求に よる
	ケーブル外径(mm)	4.3~16.6	5.3~11.0	3.3~7.9	2.6~8.0	2.3~7.6	5.0~30.5	5.0~15.0	規格要求に よる
	インピーダンス(Ω)	50	50	50	50	50	50	50	規格要求に よる
	中心導体	銀めっき銅	銀めっき銅 クラッドアルミ	銀めっき銅	銀めっき銅	銀めっき銅	銅(めっきなし)	銅(めっきなし)	各規格別に 選定
	誘電体	PTFE	PTFE	PTFE	PTFE	PTFE	PE	PE	各規格別に 選定
	外部導体	銀めっき銅	銀めっき銅	銀めっき銅	銀めっき銅	銀めっき銅	アルミニウム テープ	銀めっき銅	各規格別に 選定
ケーブル構造 /材質	インターレイヤー	メタライズド テープ	メタライズド テープ	メタライズド テープ	メタライズド テープ	_	_	メタライズド テープ	-
	シールド	銀めっき銅	銀めっき銅/ケブラーの複合材等	銀めっき銅	銀めっき銅	銀めっき銅	錫めっき銅	錫めっき銅	_
	S to true h	FEP等	FEP等		Tofral	EFD	PE	PE	_
	ジャケット	Nomex	Nomex	FEP	Tefzel	FEP	FE	PUR (オプション)	-

細径フレキシ	ブルケーブル	ſī	位相安定ケーブル		位相安定ケーブル 高耐久 i		耐熱 <i>/</i> 耐放射線 ケーブル	耐放射線 ハイパワーケーブル		計測用 ケーブル
TFlex [®]	InstaBend [®]	PhaseTrack [®]	PhaseTrack [®] LS	PhaseTrack [®] SR	QEAM	SiO2	HP	StripFlex [®] (SFT)	Clarity™	
P21	P23	P25	P27	P29	P31	P33	P35	P37	P39	
		0		0		0				
		0								
		0	0		0		0	0		
			0							
			0				0	0	0	
0	0			0						
フレキシブル	フレキシブル	フレキシブル	フレキシブル	セミリジット	フレキシブル	セミリジット	フレキシブル	フレキシブル	フレキシブル	
-65℃~+125℃	-65°C~+125°C	-55℃~+150℃	-40℃~+85℃	-55℃~+125℃	-40℃~+90℃	-270°C~+1000°C	-55℃~+200℃	-55°C~+200°C	-55°C~+125°C	
60	110	70	38	138	18	60	3	18	110	
2.6~6.9	1.6~2.7	1.5~8.0	5.1~15.0	1.2~3.6	10.3~20.6	2.3~6.9	9.9~26.7	3.1~14.1	4.7~8.0	
50	50	50	50	50	50	50	50	50	50	
銀めっき銅	銀めっき銅 クラッド鋼	銀めっき銅	銀めっき銅	銀めっき銅	銀めっき銅	無酸素銅	銀めっき銅	銀めっき銅	銀めっき銅	
PTFE	PTFE	TF4®	TF5™	TF4®	PTFE	二酸化ケイ素	PTFE	PTFE	PTFE	
銀めっき銅	銀めっき銅 クラッド鋼	銀めっき銅	銀めっき銅	裸銅チューブ	銀めっき銅	SUS304	錫めっき銅	銀めっき銅	銀めっき銅	
-	メタライズド テープ	メタライズド テープ	メタライズド テープ	_	メタライズド テープ	-	-	メタライズド テープ	FEP+SUS スプリンク (アーマー)	
銀めっき銅	銀めっき銅 クラッド鋼	銀めっき銅	錫めっき銅	-	銀めっき銅	-	錫めっき銅	銀めっき銅	SUS	
FEP	FEP	FEP	PE	-	PUR	-	FEP	FEP	PTFE繊維	

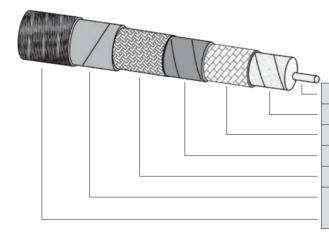
※ケーブル構造 / 材質は同一シリーズ内で異なる場合があります。

MilTech® シリーズ

MilTech®シリーズはF-35採用率100%を誇る、ミリタリー機体向け世界シェアNo.1の 同軸ケーブルです。戦闘機のような過酷な用途向けに、MIL-C-17^{注1)}では網羅されていない性能を補うべく、1972年にMIL-C-87104^{注2)}、MIL-T-81490が制定され、そのモデル製品として開発されました。

特殊な内部構造を採用することで、クラス最高レベルの低損失性能、高周波特性を発揮するほか、長期信頼性を実現する気密構造設計、お客様でコネクタ交換可能な優れたメンテナンス性など、防衛用途で必要とされるあらゆる要求を高次元に満足します。

MilTech®シリーズは、機体内配線を第一に考え抜かれたコネクタ類なども豊富に取り揃えており、数多くの米国陸海空軍のアプリケーションで採用されています。



注1) MIL-C-17は、現在、MIL-DTL-17に改訂 注2) MIL-C-87104は、現在、MIL-DTL-87104に改訂

特長

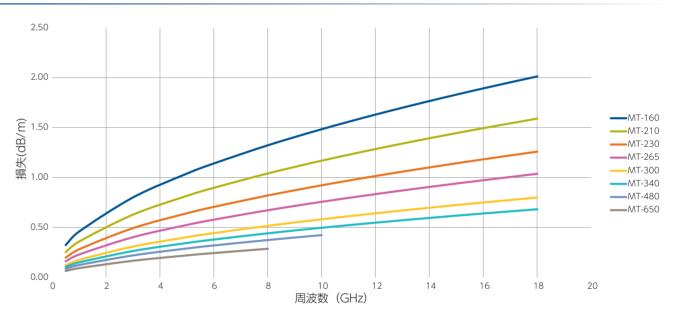
- ・MIL-DTL-87104、MIL-T-81490適合
- ・治工具一つで、お客様が先端コネクタを交換可能 (先端コネクタは、N型、SMA、TNCなどをストレート、90度、45度から選択可能)
- ・中心導体、外部導体、外部シールドの腐食を防ぐ気密構造 (1×10⁻⁵cc/sec/ftで管理) により、経年劣化を最小化した長期信頼性を保証
- ・クラス最高レベルの低損失性能、曲げに対して安定した高周波性能
- (三重構造、且つ特殊なスパイラル構造の外部導体と微細孔PTFEの組合せによる)
- ・艤装時の擦れ、引っ掻きからFEPジャケットを保護する耐摩耗繊維Nomexを採用 ・狭い機体内配線に適したバックシェル不要のマルチポートコネクタを使用可能
- ・ロックワイヤ不要のロックコネクタ (緩み留め防止機能付き) を使用可能
- ・幅広い動作温度範囲 (-55℃~+200℃)

ケーブル構造図

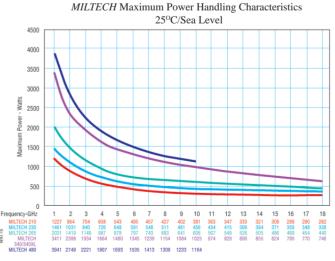
中心導体	銀めっき銅
誘電体	PTFE
外部導体	銀めっき銅
インターレイヤー	メタライズドテープ
シールド	銀めっき銅
ジャケット	FEP等
シャクット	Nomex

ケーブル仕様

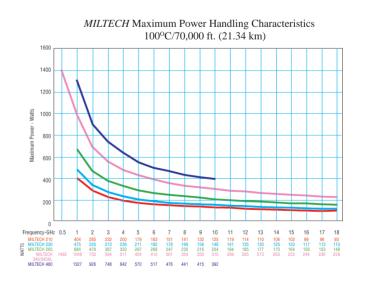
ケーブル品番	ケーブル外径 (mm)	質量 (g/m)	最小曲げ半径 (mm)
MT-160	4.3	32.8	16.0
MT-210	5.3	52.1	25.4
MT-230	5.8	67.0	29.2
MT-265	6.7	96.8	33.0
MT-300	7.6	126.6	44.5
MT-340	8.6	156.3	48.3
MT-480	12.2	297.8	57.2
MT-650	16.6	521.2	76.2


動作温度範囲:-55℃~+200℃

5 Amphenol

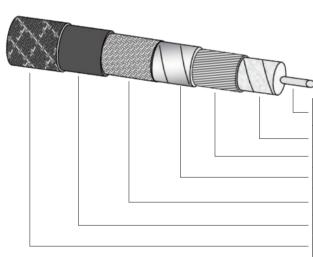

電気特性

ケーブル品番	最大使用周波数 (GHz)	特性インピーダンス (Ω)	伝搬遅延 (%)	静電容量 (pF/m)	シールド効果 (dB)
MT-160	18	50	75%	90.3	-90
MT-210	18	50	76%	89.1	-90
MT-230	18	50	77%	88.5	-90
MT-265	18	50	76%	89.7	-90
MT-300	18	50	77%	88.5	-90
MT-340	18	50	82%	83.1	-90
MT-480	10	50	77%	88.0	-90
MT-650	8	50	78%	86.8	-90


挿入損失

パワーハンドリング

上記は参考データとなります。詳細は弊社営業までお問合せください。


MilTech® Lightシリーズは、MilTech®の卓越した高周波性能、長期信頼性、高いメンテナンス性はそのままに、約20%の軽量化を実現した最新シリーズです。

シールドを銅クラッド鋼とケブラーの複合材に、MTL-270、MTL-330、MTL-440では中心導体を銅クラッドアルミに変更することで軽量性を追求しています。

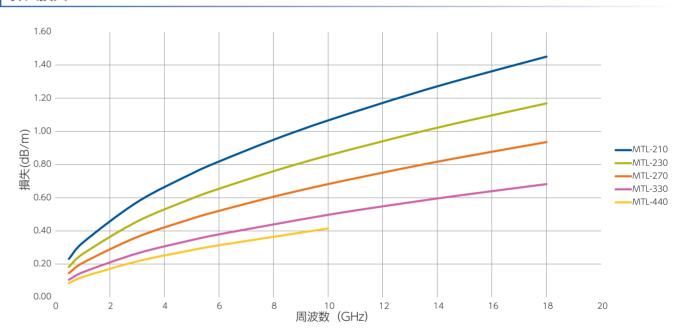
特長

- ・MIL-DTL-87104、MIL-T-81490適合
- ・MilTech®シリーズに比べて約20%の軽量化
- ・治工具一つで、お客様が先端コネクタを交換可能 (先端コネクタは、N型、SMA、TNC などをストレート、90度、45度から選択可能)
- ・中心導体、外部導体、外部シールドの腐食を防ぐ気密構造 (1×10⁻⁵cc/sec/ftで管理) により、経年劣化を最小化した長期信頼性を保証
- ・クラス最高レベルの低損失性能、曲げに対して安定した高周波性能 (三重構造、且つ特殊なスパイラル構造の外部導体と微細孔PTFEの組合せによる)
- ・艤装時の擦れ、引っ掻きからFEPジャケットを保護する耐摩耗繊維Nomexを採用
- ・狭い機体内配線に適したバックシェル不要のマルチポートコネクタを使用可能
- ・ロックワイヤ不要のロックコネクタ (緩み留め防止機能付き) を使用可能
- ・幅広い動作温度範囲 (-55℃~+200℃)

ケーブル構造図

中心導体	銀めっき銅 クラッドアルミ
誘電体	PTFE
外部導体	銀めっき銅
インターレイヤー	メタライズドテープ
シールド	銀めっき銅/ ケブラーの複合材等
ジャケット	FEP等
シャクット	Nomex

ケーブル仕様


ケーブル品番	ケーブル外径 (mm)	質量 (g/m)	最小曲げ半径 (mm)
MTL-210	5.3	44.7	24.1
MTL-230	5.8	55.1	26.2
MTL-270	6.9	73.0	31.8
MTL-330	8.6	101.3	44.5
MTL-440	11.0	201.0	63.5

動作温度範囲:-55℃~+200℃

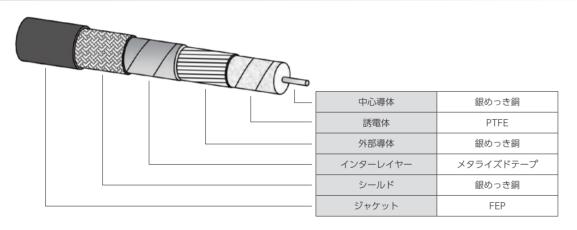
電気特性

ケーブル品番	最大使用周波数 (GHz)	特性インピーダンス (Ω)	伝搬遅延 (%)	- 静電容量 (pF/m)	 シールド効果 (dB)
ノ ノル皿田	取入医用向放致 (OIIZ)	付圧100 クン人(22)	四級建延 (70)	財电台里 (PI /III)	
MTL-210	18	50	77%	88.0	-90
MTL-230	18	50	80%	84.7	-90
MTL-270	18	50	80%	84.7	-90
MTL-330	18	50	82%	83.1	-90
MTL-440	10	50	77%	88.0	-90

挿入損失



MaxGain®シリーズは、MilTech®シリーズの優れた高周波性能、機械性能はそのままに、より幅広いアプリケーションに使用できるよう、構造をよりシンプル化したシリーズです。

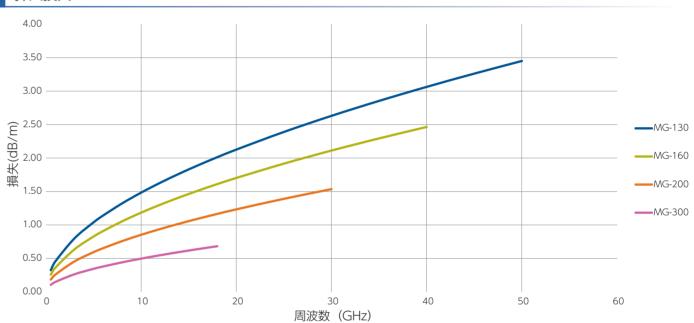

中間コネクタ、気密処理、Nomexジャケットを省略することで、低コスト化を実現しています。

特長

・クラス最高レベルの低損失性能、曲げに対して安定した高周波性能 (三重構造、且つ特殊なスパイラル構造の外部導体と微細孔PTFEの組合せによる)

ケーブル構造図

ケーブル仕様

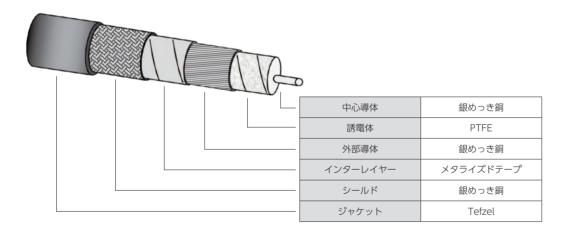

ケーブル品番	ケーブル外径 (mm)	質量 (g/m)	最小曲げ半径 (mm)
MG-130	3.3	26.8	15.9
MG-160	4.0	38.7	19.1
MG-200	5.0	55.1	31.8
MG-300	7.9	134.0	44.5

動作温度範囲:-55℃~+150℃

電気特性

ケーブル品番	最大使用周波数 (GHz)	特性インピーダンス (Ω)	伝搬遅延 (%)	静電容量 (pF/m)	シールド効果 (dB)
MG-130	50	50	80%	84.7	-90
MG-160	40	50	80%	85.2	-90
MG-200	30	50	80%	84.7	-90
MG-300	18	50	82%	83.1	-90

挿入損失


SpaceFlight (SPFLT/SPFLX) シリーズは、宇宙衛星で要求される軽量性、低損失性、耐放射線性をすべて実現するべく開発された宇宙プログラム専用の同軸ケーブルです。

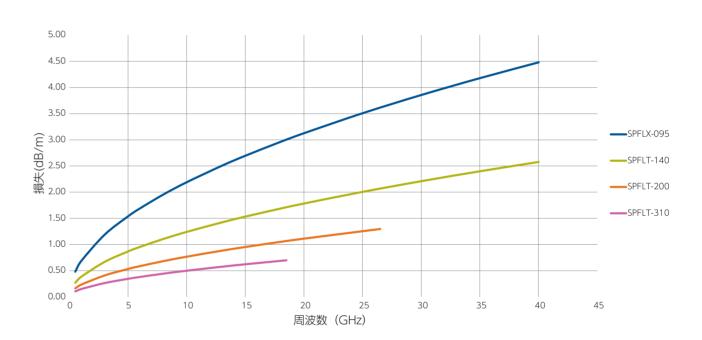
軽金属や樹脂材料を積極採用することで徹底した軽量化を図り、微細孔PTFEを使用した誘電体により優れた低損失性を発揮します。また、Tefzelジャケットを採用し、クラス最高レベルの最大100Mradの耐放射線性能を実現します。

特長

- ・銅クラッドアルミ合金の中心導体と銅クラッド鋼とケブラーの複合材シールドにより、徹底した軽量化を実現
- ・耐マルチパクション性を考慮したコネクタ付きアセンブリ
- ーコネクタベントホール
- -コネクタとケーブルの接続部構造
- ・クラス最高レベルの低損失性能、曲げに対して安定した高周波性能 (三重構造、且つ特殊なスパイラル構造の外部導体と微細孔PTFEの組合せによる)
- ・低アウトガス
- ・Tefzelジャケットによる優れた耐放射線性 (100Mrad)

ケーブル構造図

ケーブル仕様


ケーブル品番	ケーブル外径 (mm)	質量 (g/m)	最小曲げ半径 (mm)
SPFLX-095	2.6	12.4	12.7
SPFLT-140	3.5	22.0	15.9
SPFLT-200	4.9	52.1	25.4
SPFLT-310	8.0	106.8	38.1

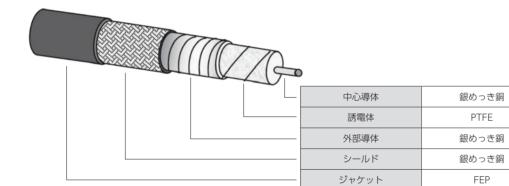
動作温度範囲:-150℃~+150℃

電気特性

ケーブル品番	最大使用周波数 (GHz)	特性インピーダンス (Ω)	伝搬遅延 (%)	静電容量 (pF/m)	シールド効果 (dB)
SPFLX-095	40	50	81%	83.6	-90
SPFLT-140	40	50	80%	84.7	-90
SPFLT-200	26.5	50	80%	84.7	-90
SPFLT-310	18.5	50	81%	83.6	-90

挿入損失

HeliFoilシリーズは、MilTech®シリーズ、MaxGain®シリーズと並ぶ低損失性能を有する 汎用同軸ケーブルです。

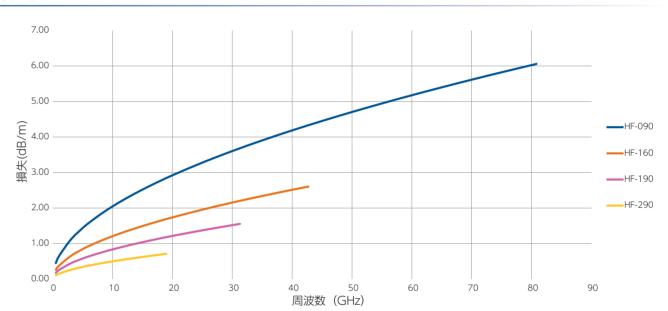

シンプルな二重構造の外部導体採用による高いコスト競争力で機器外部だけでなく、機器内部配線にも幅広くご使用いただけます。

特長

- ・微細孔PTFEによるクラス最高レベルの低損失性能
- ・二重構造、且つ螺旋巻き構造の外部導体採用による高いコスト競争力
- ・敷設後は固定して使用する静的アプリケーションに最適

ケーブル構造図

ケーブル仕様


ケーブル品番	ケーブル外径 (mm)	質量 (g/m)	最小曲げ半径 (mm)
HF-090	2.3	14.9	9.5
HF-160	4.0	37.2	19.1
HF-190	4.9	59.5	25.4
HF-290	7.6	133.9	38.1

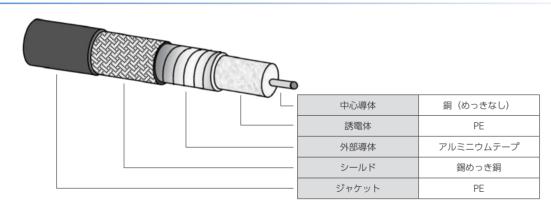
動作温度範囲:-55℃~+150℃

電気特性

ケーブル品番	最大使用周波数 (GHz)	特性インピーダンス (Ω)	伝搬遅延 (%)	静電容量 (pF/m)	シールド効果 (dB)
HF-090	80	50	80%	80.7	-90
HF-160	42	50	77%	83.3	-90
HF-190	31	50	83%	81.6	-90
HF-290	18	50	82%	82.0	-90

挿入損失

LMR®シリーズは、LANから衛星通信を含む商用通信、軍事通信用、ならびにビル屋内配線から石油採掘現場まで、幅広い用途をカバーする高性能フレキシブル同軸ケーブルです。

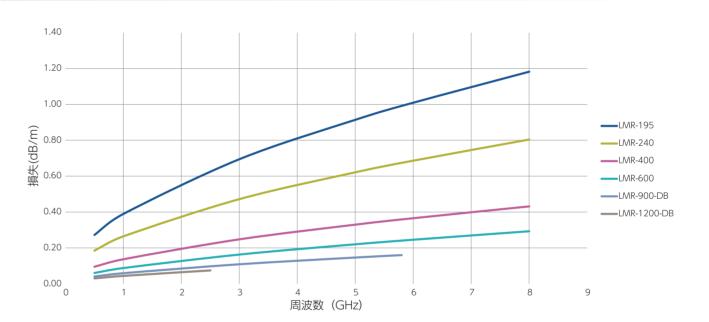

RGケーブルと比べて低口スで、コルゲートゲーブルより柔軟性に優れているため、通信分野において携帯電話基地局、CATV、GPS装置、無線LAN等で幅広い実績があります。米国シスコ社のワイヤレスLANシステムにおいて、低損失アンテナ接続ケーブルとして標準採用されています。

特長

- ・幅広いサイズ (ケーブル太さ) バリエーション
- ・コルゲートケーブルに比べ優れた柔軟性
- ・発泡ポリエチレン誘電体による低損失性能 (コルゲートケーブルとほぼ同等)
- ・アンテナフィーダー及びジャンパーケーブル用途において、トップクラスの価格競争力
- ・長期間の屋外使用など、耐候性が求められる用途に最適なポリエチレンをジャケットに標準採用
- ・誘電体と外部導体を接着した特殊防湿構造により、内部の経年劣化を最小化し、長期間の安定性能を実現
- ・75Ω、防水性、軽量性、フレキシブル性などの特定の性能を強化した、オプションシリーズを豊富に展開

ケーブル構造図

ケーブル仕様


ケーブル品番	ケーブル外径 (mm)	質量 (g/m)	最小曲げ半径 (mm)
LMR-195	5.0	31.3	12.7
LMR-240	6.1	50.6	19.1
LMR-400	10.3	101.3	25.4
LMR-600	15.0	195.1	38.1
LMR-900-DB	22.1	396.1	76.2
LMR-1200-DB	30.5	667.1	165.1

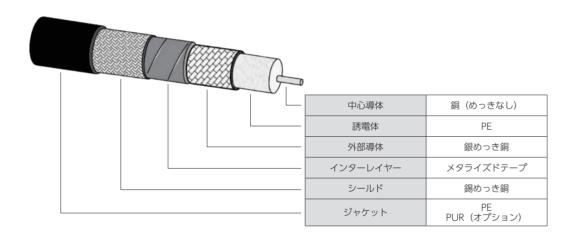
動作温度範囲:-40℃~+85℃

電気特性

ケーブル品番	最大使用周波数 (GHz)	特性インピーダンス (Ω)	伝搬遅延 (%)	静電容量 (pF/m)	シールド効果 (dB)
LMR-195	8	50	76%	89.1	-90
LMR-240	8	50	83%	81.6	-90
LMR-400	8	50	84%	80.6	-90
LMR-600	8	50	85%	79.7	-90
LMR-900-DB	5.8	50	87%	77.9	-90
LMR-1200-DB	2.5	50	88%	77.0	-90

挿入損失

15 Amphenol Amphenol

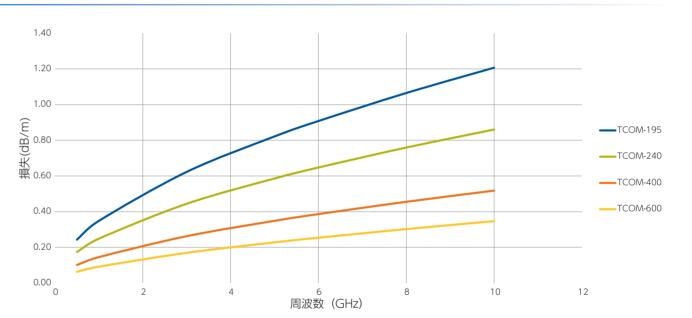

TCOM®シリーズは、数千回以上の巻き取り/引き伸ばしを繰り返し行えるフレキシブル 同軸ケーブルで、防衛用途では野外移動式アンテナや可倒式アンテナなどに用いられています。

特長

- ・3 重シールド構造と特殊な一次シールド構造により、数千回以上の巻き取りと引き伸ばしに対して安定した高周波性能を発揮
- ・発泡ポリエチレン誘電体による低損失性能
- ・標準ポリエチレンジャケットに加え、低摩耗、高耐候のポリウレタンジャケットも提供
- ・防水性コンパウンド入りジャケット採用により、ケーブルを直接、地中に敷設することが可能なDB (Direct Burial) タイプをラインアップ

ケーブル構造図

ケーブル仕様


ケーブル品番	ケーブル外径 (mm)	質量 (g/m)	最小曲げ半径 (mm)
TCOM-195	5.0	52.1	12.7
TCOM-240	6.1	67.0	19.1
TCOM-400	10.3	119.1	25.4
TCOM-600	15.0	238.2	38.1

動作温度範囲:-40℃~+85℃

電気特性

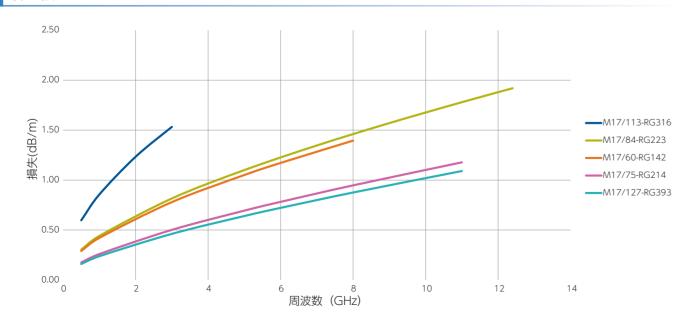
ケーブル品番	最大使用周波数 (GHz)	特性インピーダンス(Ω)	伝搬遅延 (%)	静電容量 (pF/m)	シールド効果 (dB)
TCOM-195	10	50	76%	89.1	-100
TCOM-240	10	50	84%	80.6	-100
TCOM-400	10	50	85%	79.7	-100
TCOM-600	10	50	87%	77.9	-100

挿入損失

M17/RGケーブルは1940年代に開発されたMILスペック同軸ケーブルで、第二次世界大戦を契機に軍用として広く使用されるようになりました。のちに民間通信などにおいて急速に普及し、今日では最も一般的な高信頼同軸ケーブルとして認知されています。

アンフェノールは、1940年代のMIL-DTL-17スペック制定に関わり、現在、世界で最も 多くのMIL-DTL-17のQPLを保有する同軸ケーブルメーカです。

ケーブル仕様


ケーブル品番	ケーブル外径 (mm)	質量 (g/m)	最小曲げ半径 (mm)
M17/113-RG316	2.5	18.0	*
M17/84-RG223	5.4	61.0	12.7
M17/60-RG142	5.0	64.0	*
M17/75-RG214	10.8	194.0	50.8
M17/127-RG393	9.9	261.0	304.8

^{*}は、弊社営業までお問合せください。

電気特性

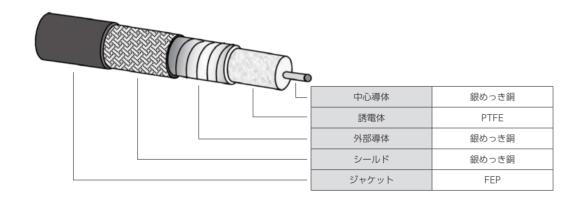
ケーブル品番	最大使用周波数 (GHz)	特性インピーダンス (Ω)	伝搬遅延 (%)	静電容量 (pF/m)	シールド効果 (dB)
M17/113-RG316	3	50	70%	96.5	-40~60
M17/84-RG223	12.4	50	66%	101.1	-40~60
M17/60-RG142	8	50	70%	96.5	-40~60
M17/75-RG214	11	50	66%	101.1	-40~60
M17/127-RG393	11	50	70%	96.5	-40~60

挿入損失

ケーブル品番

M17 Part No.	M17 QPL	アンフェノール品番	M17 Part No.	M17 QPL	アンフェノール品番
M17/2-RG6	17-663-83	AA-3810	M17/137-00001	17-810-77	AA-3829
M17/6-RG11	17-100-79	AA-3811	M17/138-00001	17-812-77	AA-3830
M 17/6-RG12	17-100-79	AA-3812	M17/139-00001	17-359-84	AA-3831
M17/15-RG22 M17/15-RG111	17-793-77 17-793-77	AA-3395 AA-3396	M17/151-00001 M17/151-00002	17-543-90 17-543-90	AA-5023 AA-5024
M17/28-RG58	17-793-77	AA-3390 AA-3397	M17/151-00002 M17/152-00001	17-343-90	AA-3024 AA-4920
M17/20-RG59	17-102-79	AA-3797	M17/152-00001	17-544-90	AA-5025
M17/30-RG62	17-795-77	AA-3398	M17/154-00002	17-544-90	AA-5026
M17/31-RG63	17-103-79	AA-3815	M17/155-00001	17-304-83	AA-4636
M17/31-RG79	17-103-79	AA-3816	M17/156-00001	17-749-85	AA-5606
M17/45-RG108	17-796-77	AA-3399	M17/157-00001	17-305-83	AA-4638
W17/52-RG119	17-749-85	AA-3818	M17/158-00001	17-664-83	AA-4639
W17/52-RG120	17-749-85	AA-3819	M17/159-00001	17-598-81	AA-4640
Λ17/54-RG122	17-305-83 17-664-83	AA-3400	M17/160-00001	17-1102-85	AA-4641
И17/60-RG142 И17/62-RG144	17-750-85	AA-3401 AA-3820	M17/162-00001 M17/163-00001	17-1104-85 17-804-77	AA-4653 AA-4643
117/65-RG165	17-598-81	AA-3620 AA-3402	M17/163-00001 M17/164-00001	17-804-77	AA-4645
M17/65-RG166	17-598-81	AA-3402	M17/164-00001	17-984-85	AA-4646
И17/67-RG177	17-1102-85	AA-3404	M17/165-00001	17-1102-85	AA-4647
M17/73-RG212	17-1104-85	AA-3406	M17/165-00002	17-1102-85	AA-6544
117/74-RG213	17-804-77	AA-3408	M17/166-00001	17-1102-85	AA-4648
M17/74-RG215	17-804-77	AA-3407	M17/167-00001	17-303-83	AA-4649
Λ17/75-RG214	17-804-77	AA-3409	M17/168-00001	17-598-81	AA-4650
Λ17/75-RG365	17-984-85	AA-4761	M17/168-00002	17-598-81	AA-6306
Λ17/77-RG216	17-108-79	AA-3823	M17/169-00001	17-666-84	AA-4651
117/78-RG217	17-1102-85	AA-3410	M17/170-00001	17-811-77	AA-4652
Λ17/78-00001	17-1102-85	AA-8212	M17/171-00001	17-474-86	AA-4653
Λ17/79-RG218 Λ17/79-RG219	17-1102-85 17-1102-85	AA-3411 AA-3412	M17/172-00001 M17/173-00001	17-812-77 17-813-77	AA-4654 AA-4655
M17/79-RG219 M17/81-00001	17-1102-05	AA-5412 AA-6002	M17/173-00001 M17/174-00001	17-013-77	AA-4656
M17/81-00001	17-354-88	AA-6002 AA-6003	M17/174-00001 M17/175-00001	17-429-64	AA-4657
Λ17/84-RG223	17-303-83	AA-3413	M17/177-00001	17-246-90	AA-6513
Л17/86-00001	17-598-81	AA-5077	M17/180-00001	17-05-92	AA-7276
M17/86-00002	17-598-81	AA-5078	M17/181-00001	17-05-92	AA-7277
Л17/87-00001	17-355-88	AA-5168	M17/181-00002	17-05-92	AA-7278
M17/90-RG71	17-280-83	AA-4444	M17/182-00001	17-05-92	AA-7279
Λ17/92-RG115	17-598-81	AA-3824	M17/182-00002	17-05-92	AA-7280
V17/92-00001	17-598-81	AA-5308	M17/183-00001	17-05-92	AA-7281
Λ17/93-RG178	17-666-83	AA-3414	M17/184-00001	17-05-92	AA-7282
Λ17/93-00001	17-867-84	AA-4762	M17/185-00001	17-05-92	AA-7283
Λ17/94-RG179	17-809-77	AA-3415	M17/186-00001	17-05-92	AA-7284
Λ17/95-RG180 Λ17/97-RG210	17-810-77 17-668-83	AA-3416 AA-4763	M17/187-00001 M17/188-00001	17-05-92 17-05-92	AA-7285 AA-7286
117/110-RG302	17-425-84	AA-4703 AA-3826	M17/189-00001	17-05-92	AA-7287
17/111-RG303	17-811-77	AA-3417	M17/189-00002	17-05-92	AA-7288
17/112-RG304	17-474-86	AA-5130	M17/190-00001	17-05-92	AA-7289
17/113-RG316	17-812-77	AA-3418	M17/191-00001	17-05-92	AA-7290
17/116-RG307	17-482-84	AA-4346	M17/192-00001	17-05-92	AA-7291
17/119-RG174	17-813-77	AA-3419	M17/192-00002	17-95-94	AA-8111
17/126-RG391	17-670-83	AA-4464	M17/193-00001	17-05-92	AA-7292
17/126-RG392	17-670-83	AA-4465	M17/193-00002	17-05-92	AA-7293
17/127-RG393	17-429-84	AA-3420	M17/194-00001	17-05-92	AA-7294
117/128-RG400 117/129-RG401	17-671-83 17-197-85	AA-3827 AA-5011	M17/195-00001 M17/196-00001	17-05-92 17-05-92	AA-7295 AA7296
117/129-RG401	17-197-85	AA-5011 AA-5012	M17/197-00001	17-05-92	AA7290 AA-7297
117/129-00001 117/130-RG402	17-197-85	AA-5012	M17/198-00001	17-05-92	AA-7298
17/130-00001	17-197-85	AA-5014	M17/199-00001	17-05-92	AA-7299
17/130-00002	17-197-85	AA-5015	M17/200-00001	17-05-92	AA-7300
17/130-00003	17-197-85	AA-5016	M17/210-00001	17-05-92	AA-3404
117130-00004	17-297-90	AA-5916	M17/211-00001	17-05-92	AA-8063
117/130-00005	17-297-90	AA-5917	M17/211-00002	17-05-92	AA-8064
117/130-00006	17-297-90	AA-5918	M17/212-00001	17-05-92	AA-8065
117/130-00007	17-297-90	AA-5919	M17/213-00001	17-05-92 17-05-92	AA-8066 AA-8067
117/131-RG403 117/132-00001	17-244-90 17-245-90	AA-6511 AA-6512	M17/214-00001 M17/215-00001	17-05-92	AA-8067 AA-8068
M17/132-00001 M17/133-RG405	17-245-90	AA-0512 AA-5017	M17/216-00001	17-05-92	AA-8069
17/133-00001	17-197-85	AA-5017 AA-5018	M17/217-00001	17-05-92	AA-8070
17/133-00002	17-298-90	AA-5019	M17/218-00001	17-05-92	AA-8071
117/133-00003	17-298-90	AA-5020	M17/218-00002	17-05-92	AA-8072
117/133-00004	17-298-90	AA-5021	M17/220-00001	17-041-99	AA-8469
117/133-00005	17-298-90	AA-5022	M17/220-00002	17-041-99	AA-8897
M17-133-00006	17-298-90	AA-5920	M17/221-00001	17-041-99	AA-8470
Λ17-133-00007	17-298-90	AA-5921	M17/221-00002	17-041-99	AA-8898
Λ17/133-00008 Λ17/133 00000	17-298-90	AA-5922	M17/222-00001	17-041-99	AA-8681
Λ17/133-00009 Λ17/133-00010	17-298-90 17-298-90	AA-5923	M17/222-00002	17-041-99	AA-8899
M17/133-00010 M17/133-00011	17-298-90	AA-5924 AA-5925	M17/223-00001 M17/223-00002	17-041-99 17-041-99	AA-8471 AA-8900
M17/133-00011 M17/134-00001	17-298-90	AA-5925 AA-5411	M17/223-00002 M17/224-00001	17-041-99	AA-8472
Л17/134-00001 Л17/134-00002	17-952-85	AA-3411 AA-4472	M17/224-00001 M17/224-00002	17-041-99	AA-8901
Λ17/134-00002 Λ17/134-00003	17-952-85	AA-7557	M17/224-00002 M17/225-00001	17-041-99	AA-8473
Λ17/134-00003 Λ17/134-00004	17-952-85	AA-7558	M17/225-00001	17-041-99	AA-8902
W17/135-00004	17-202-88	AA-3833	M17/225-00002	17-041-99	AA-8474
V17/135-00002	17-202-88	AA-4473	M17/226-00002	17-041-99	AA-8903
V17/135-00003	17-202-88	AA-5926	M17/227-00001	17-041-99	AA-8475
V17/135-00004	17-202-88	AA-5927	M17/227-00002	17-041-99	AA-8904
V17/135-00005	17-202-88	AA-7559	M17/228-00001	17-041-99	AA-8476
M17/135-00006	17-202-88	AA-7560	M17/228-00002	17-041-99	AA-8905
M17/136-00001	17-809-77	AA-3828			

Flex® シリーズ 細径フレキシブルケーブル

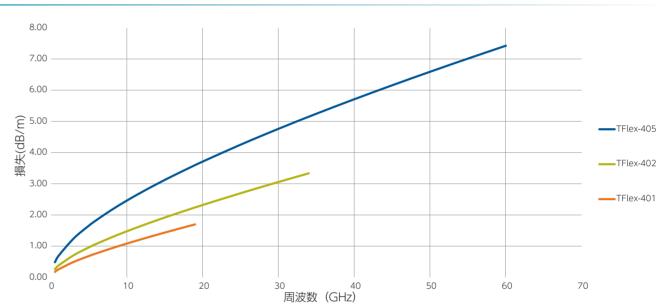

TFlex®シリーズは、同番号のRGセミリジッドケーブルと同等の高周波性能を発揮するフレキシブル同軸ケーブルです。3Dフォーミングを必要とするセミリジッドケーブルの代替として主に機器内配線の自由な設計に役立ちます。

特長

- ・RGセミリジッドケーブルとコネクタ互換 (TFlex-405=M17/133-RG405、TFlex-402=M17/130-RG402、TFlex-401=M17/129-RG401)
- ·TFlex-402、401は撚線中央導体を用いることで柔軟性を確保
- ・2重シールドにより優れたシールド効果
- ・フッ素系ジャケットにより幅広い使用温度と優れた耐候性を実現

ケーブル構造図

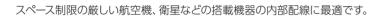
ケーブル仕様


ケーブル品番	ケーブル外径 (mm)	質量 (g/m)	最小曲げ半径 (mm)
TFlex-405	2.6	22.3	6.4
TFlex-402	4.1	49.1	12.7
TFlex-401	6.9	141.5	28.6

動作温度範囲:-65℃~+125℃

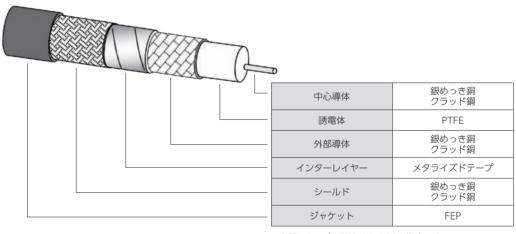
電気特性

ケーブル品番	最大使用周波数 (GHz)	特性インピーダンス (Ω)	伝搬遅延 (%)	静電容量 (pF/m)	シールド効果 (dB)
TFlex-405	60	50	70%	97.5	-100
TFlex-402	34	50	70%	97.5	-100
TFlex-401	19	50	70%	97.5	-100


挿入損失

InstaBend® 細径プレキシブルケーブル

InstaBend®は、コネクタ後端面からケーブルを曲げることができる高性能同軸ケーブルアセンブリです。


独自に開発した専用コネクタとケーブル結線技術により、一般的な同軸アセンブリのコネクタ後端部に見られる収縮チューブでカバーした直線部が不要になります。このため機器内の複雑な配線に対して大きな自由度が生まれ、よりハイレベルな配線設計を可能にします。

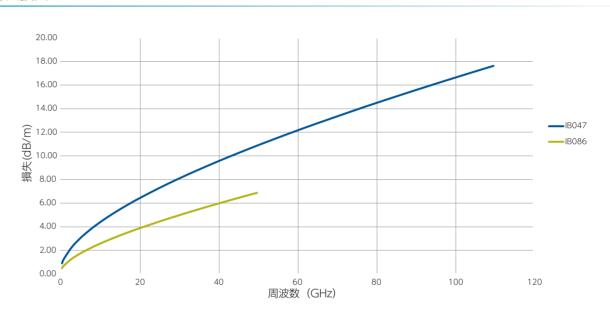
特長

- ・コネクタ後端に収縮チューブやブーツが無く、コネクタ後端から直接ケーブルを曲げることが可能
- ·2種類のケーブルバリエーション (外径: φ2.67mm、φ1.55mm)
- ・コネクタ付きアセンブリで提供
- ・コネクタはSMP、SMA、2.92mmの3種類
- ・2重シールドにより優れたシールド効果
- ・フッ素系ジャケットにより幅広い使用温度と優れた耐候性を実現

ケーブル構造図

*上記のケーブル構造はIB-086の場合です。 IB-047については、弊社営業までお問合わせ下さい。

ケーブル仕様


ケーブル品番	ケーブル外径 (mm)	質量 (g/m)	最小曲げ半径 (mm)
IB047	1.6	8.0	3.3
IB086	2.7	26.5	6.4

動作温度範囲:-65℃~+125℃

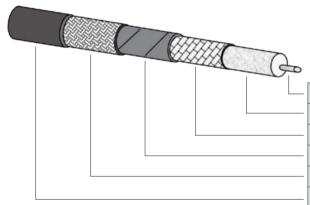
電気特性

ケーブル品番	最大使用周波数 (GHz)	特性インピーダンス (Ω)	伝搬遅延 (%)	静電容量 (pF/m)	シールド効果 (dB)
IB047	110	50	70%	98.1	-90
IB086	50	50	70%	95.2	-90

挿入損失

PhaseTrack® シリーズ

PhaseTrack®シリーズは、温度変化に対する位相変動を最小化するために開発された同軸ケーブルです。誘電体に、アンフェノールが独自開発したフッ化炭素系材料 (TF4®)を採用することで、急激な位相変化を完全に除去することに成功しました。


世界最高レベルの位相安定性能を誇るPhaseTrack®ケーブルは、通信衛星、戦闘機レーダ、EWシステムなどのアビオニクスシステムに採用されています。

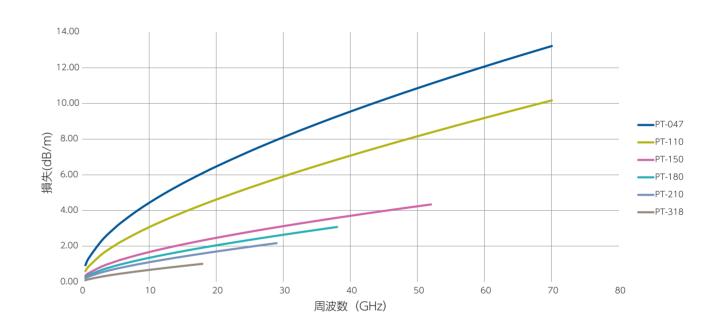
特長

- ・線膨張係数を最適化した特殊な誘電体を用いることで、温度変化に対してトップクラスの位相安定性能を発揮
- ・幅広い動作温度範囲
- ・宇宙衛星での使用に適したTefzel製ジャケットを適用可能
- ・機体内艤装に最適なNomex製ジャケットを適用可能

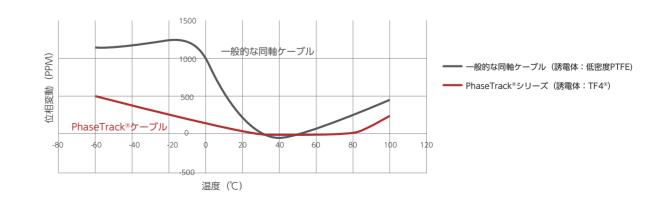
ケーブル構造図

.	中心導体	銀めっき銅
. [誘電体	TF4 [®]
. [外部導体	銀めっき銅
. [インターレイヤー	メタライズドテープ
. [シールド	銀めっき銅
. [ジャケット	FEP

ケーブル仕様


ケーブル品番	ケーブル外径 (mm)	質量 (g/m)	最小曲げ半径 (mm)
PT-047	1.5	6.7	6.4
PT-110	2.7	20.8	14.0
PT-150	3.7	35.7	19.1
PT-180	4.6	53.6	25.4
PT-210	5.6	68.5	28.6
PT-318	8.0	134.0	44.5

動作温度範囲:-55℃~+150℃


電気特性

ケーブル品番	最大使用周波数 (GHz)	特性インピーダンス (Ω)	伝搬遅延 (%)	静電容量 (pF/m)	シールド効果 (dB)
PT-047	70	50	80%	84.7	-90
PT-110	70	50	82%	82.6	-90
PT-150	52	50	83%	82.1	-90
PT-180	38	50	83%	82.1	-90
PT-210	29	50	83%	82.1	-90
PT-318	18	50	83%	82.1	-90

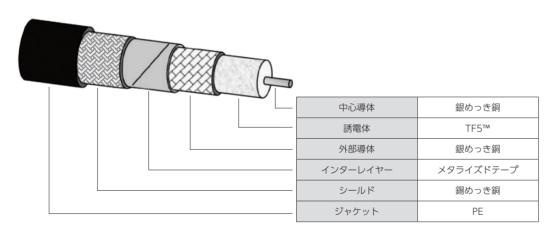
挿入損失

位相安定性

PhaseTrack® LS シリーズ

PhaseTrack® LSシリーズは、温度変化に対する抜群の位相安定性を誇るPhaseTrack®シリーズの低煙タイプとして開発されたフレキシブル同軸ケーブルです。アンフェノールが独自開発したフッ化炭素系材料 (TF5™) を誘電体に使うことで、温度変化に対する位相変動の最小化と低煙性を両立しています。

最大使用温度85℃であるため、レーダサイト、シェルターなどの地上設備、車載レーダ、 車載EWシステムなどの車載システム、艦載レーダなどの艦上システムなどに適します。

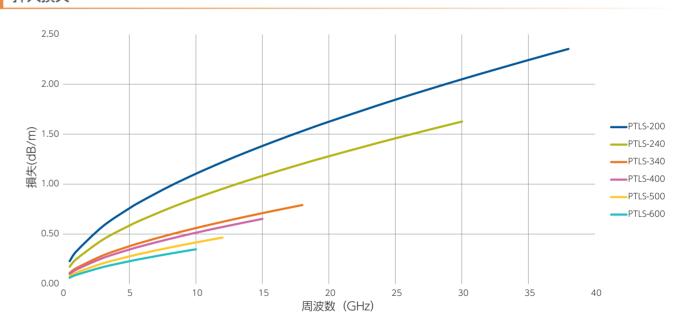

低損失性、低煙性、位相安定性のすべてが求められる用途に最適な同軸ケーブルで、 比較的リーズナブルな価格帯も強みです。

特長

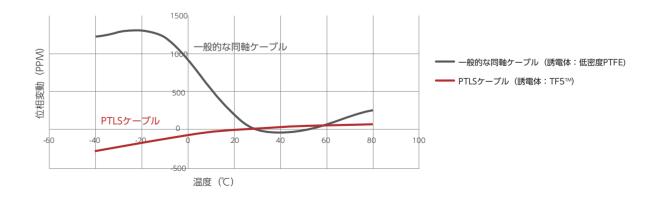
- ・線膨張係数を最適化した特殊な誘電体を用いることで、温度変化に対してトップクラスの位相安定性能を発揮
- ・幅広い動作温度範囲 (-40℃~+85℃)
- ・宇宙衛星での使用に適したTefzel製ジャケットを適用可能
- ・機体内艤装に最適なNomex製ジャケットを適用可能

ケーブル構造図

ケーブル仕様


ケーブル品番	ケーブル外径 (mm)	質量 (g/m)	最小曲げ半径 (mm)
PTLS-200	5.1	50.0	25.4
PTLS-240	6.4	68.8	31.8
PTLS-340	8.9	100.5	44.5
PTLS-400	10.3	145.0	50.8
PTLS-500	12.7	201.0	63.5
PTLS-600	15.0	263.6	74.9

動作温度範囲:-40℃~+85℃

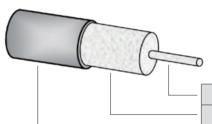

電気特性

ケーブル品番	最大使用周波数 (GHz)	特性インピーダンス (Ω)	伝搬遅延 (%)	静電容量 (pF/m)	シールド効果 (dB)
PTLS-200	38	50	82%	82.6	-90
PTLS-240	30	50	82%	82.6	-90
PTLS-340	18	50	83%	81.6	-90
PTLS-400	15	50	85%	79.7	-90
PTLS-500	12	50	85%	79.7	-90
PTLS-600	10	50	87%	77.9	-90

挿入損失

位相安定性

PhaseTrack® SR シリーズ


PhaseTrack® SRシリーズは、セミリジッドケーブルの形態安定性に基づく安定した 高周波性能と、TF4®誘電体による世界最高レベルの位相安定性能を組み合わせた セミリジッドケーブルです。

通信衛星、レーダ、アビオニクス機器などに採用されています。

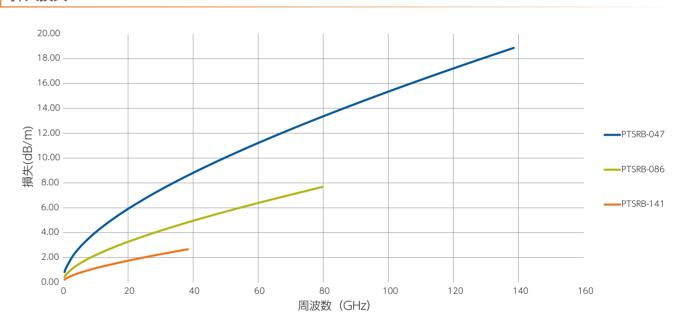
特長

- ・線膨張係数を最適化した特殊な誘電体を用いることで、温度変化に対してトップクラスの位相安定性能を発揮
- ・低損失
- ·耐放射線性 (200Mrad)

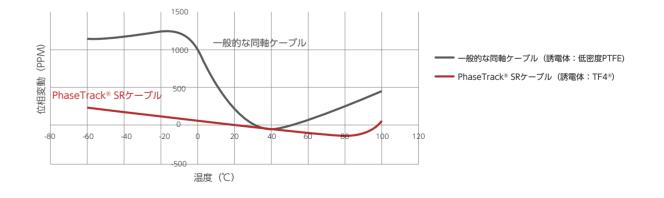
ケーブル構造図

中心導体	銀めっき銅
誘電体	TF4®
外部導体	裸銅チューブ

ケーブル仕様


ケーブル品番	ケーブル外径 (mm)	質量 (g/m)	最小曲げ半径 (mm)
PTSRB-047	1.2	6.7	3.8
PTSRB-086	2.2	19.4	6.4
PTSRB-141	3.6	43.2	10.8

動作温度範囲:-55℃~+125℃


電気特性

ケーブル品番	最大使用周波数 (GHz)	特性インピーダンス (Ω)	伝搬遅延 (%)	静電容量 (pF/m)	シールド効果 (dB)
PTSRB-047	138	50	78%	86.8	-110
PTSRB-086	80	50	82%	82.6	-110
PTSRB-141	38	50	83%	82.1	-110

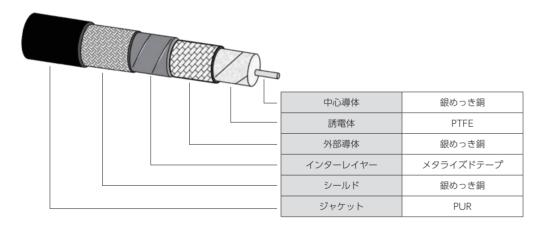
挿入損失

位相安定性

野外通信用 高耐久ケーブル

QEAM シリーズ

QEAMシリーズは、1万回以上の曲げ伸ばしに対応した極めて高耐久で、野外戦術用アンテナに最適な同軸ケーブルです。可倒式のアンテナ、移動式の小型アンテナに使用される同軸ケーブルは、リールに巻かれた状態と引き延ばした状態を何度も繰り返して使用するため、堅牢性と特性の安定性が求められます。

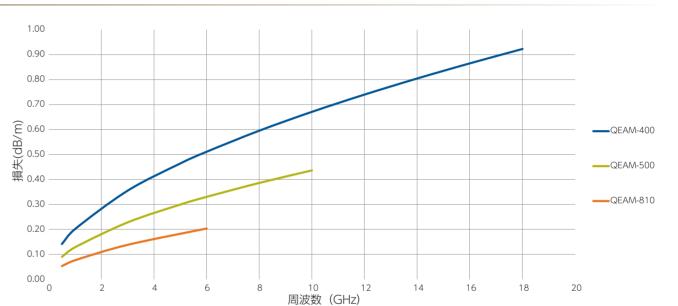

QEAMシリーズは、撚線構造の中心導体、めっき付きのフラットテープを編み込んだ特殊な構造の外部シールドを採用することで、曲げによる安定した特性、耐久性、柔軟性を実現しています。また屋外使用に最適な耐候性と耐摩耗性に優れたポリウレタンジャケットを標準装備しています。

特長

- ・1万回以上の曲げ伸ばしに対応した耐久性と特性安定性
- ・微細孔PTFEによる低損失性能
- ・撚線構造の中心導体、フラットテープを編み込んだ特殊な構造の外部シールドによる優れた柔軟性
- ・ポリウレタンジャケット採用による優れた耐候性と耐摩耗性

ケーブル構造図

ケーブル仕様


ケーブル品番	ケーブル外径 (mm)	質量 (g/m)	最小曲げ半径 (mm)
QEAM-400	10.3	226.2	60.2
QEAM-500	13.0	320.1	69.9
QEAM-810	20.6	595.6	203.2

動作温度範囲:-40℃~+90℃

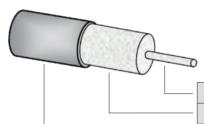
電気特性

ケーブル品番	最大使用周波数 (GHz)	特性インピーダンス (Ω)	伝搬遅延 (%)	静電容量 (pF/m)	シールド効果 (dB)
QEAM-400	18	50	76%	86.6	-150
QEAM-500	10	50	78%	86.8	-150
QEAM-810	6	50	80%	84.7	-150

挿入損失

SiO2シリーズは、誘電体に高純度のSiO2 (二酸化ケイ素) を用い、外部導体にSUS304 スチール (クロム・ニッケル合金) を採用したセミリジッドケーブルです。温度変化による 位相変動を最小に抑え、極めて広範囲な温度環境下 (−270℃~+1000℃) での使用 と最大300Mradの耐放射線特性を可能にします。

クラックフリーの溶融ガラスで封止したSMA、N型、TNCなどのコネクタをレーザー溶接 したアセンブリは、最高600℃で使用可能です。


人工衛星の暴露アプリケーション、フェーズドアレイレーダー、量子研究施設などの過酷な温度環境、放射線環境で厳しい位相管理が要求されるアプリケーションに最適です。

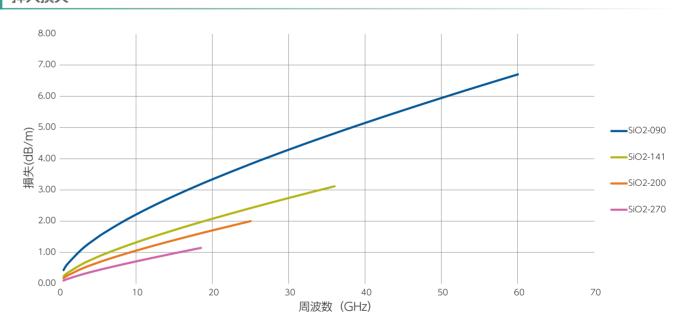
特長

- ・優れた位相安定性
- ・幅広い動作温度範囲 (-270℃~+1000℃)
- ・高い耐放射線性 (300Mrad)

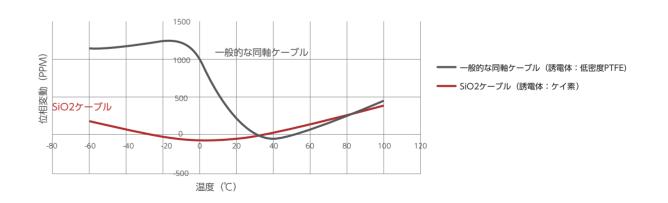
ケーブル構造図

中心導体	無酸素銅
誘電体	二酸化ケイ素
外部導体	SUS304

ケーブル仕様


ケーブル品番	ケーブル外径 (mm)	質量 (g/m)	最小曲げ半径 (mm)
SiO2-090	2.3	22.3	9.1
SiO2-141	3.6	37.2	12.7
SiO2-200	5.1	65.5	20.3
SiO2-270	6.9	111.7	25.4

動作温度範囲:-270℃~+1000℃

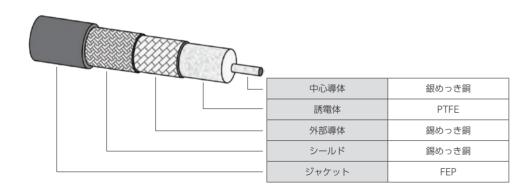

電気特性

ケーブル品番	最大使用周波数 (GHz)	特性インピーダンス (Ω)	伝搬遅延 (%)	静電容量 (pF/m)	シールド効果 (dB)
SiO2-090	60	50	80%	84.7	-110
SiO2-141	36	50	80%	84.7	-110
SiO2-200	25	50	80%	84.7	-110
SiO2-270	18.5	50	80%	84.7	-110

挿入損失

位相安定性

HPシリーズは、高温環境下で高い平均電力、ピーク電力を発揮できるほか、低口ス、RFシールド性、低VSWRの要求も満足するため、高出力レーザー、MRI、半導体製造装置、液晶パネル製造装置、放送機器など、多岐にわたるアプリケーションで採用されています。

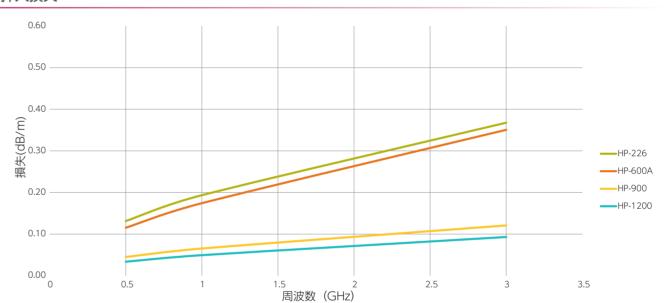

アンフェノールは、周囲環境(温度)、パワー、高周波性能、機械的性能、サイズ、重量などのお客様のあらゆる要求に対して、最適な誘電体材料、導体構造、導体材料、ジャケット材料を組合わせることで、最良の同軸ケーブルを提案します。また、ハイパワー用途に適したN型、EIAコネクタ、DINコネクタ、LCコネクタなど豊富なラインアップから、性能を最大化するコネクタを選定します。

特長

- ・耐熱性の高いフッ素系ジャケットを用いることで、高温下での優れた耐電力性能を実現
- ・アンフェノールのハイパワー同軸ケーブルにおいて、最高レベルの耐電力を実現(最大サイズ)

ケーブル構造図

ケーブル仕様


ケーブル品番	ケーブル外径 (mm)	質量 (g/m)	最小曲げ半径 (mm)
HP-226	12.3	372.0	127.0
HP-600A	15.0	483.6	69.9
HP-900	19.7	706.8	101.6
HP-1200	26.7	1101.1	203.2

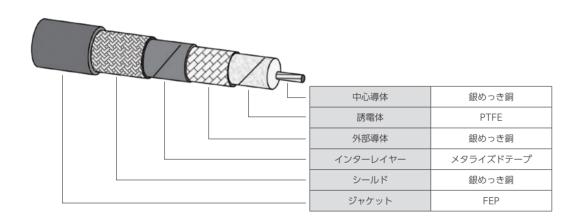
動作温度範囲:-55℃~+200℃ (HP-1200は-40℃~+125℃)

電気特性

ケーブル品番	最大使用周波数 (GHz)	特性インピーダンス (Ω)	伝搬遅延 (%)	静電容量 (pF/m)	シールド効果 (dB)
HP-226	3	50	71%	93.8	-60
HP-600A	3	50	71%	95.1	-60
HP-900	3	50	76%	87.6	-90
HP-1200	3	50	76%	87.6	-60

挿入損失

Amphenol Amphenol

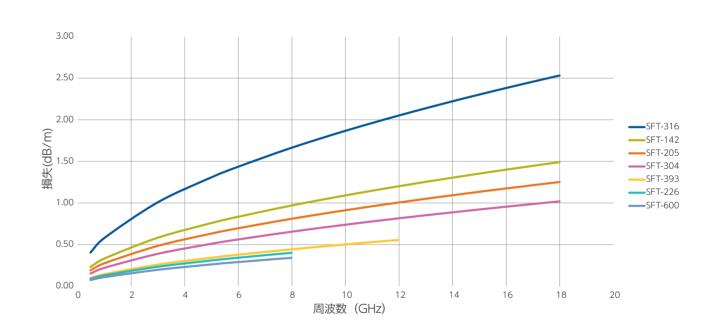

StripFlex® (SFT) シリーズは、HPシリーズと同等の電力性能を備えながら、より低損失 伝送を実現します。防衛用車載/艦載レーダ送信機や車載/艦載EWシステムなどの防衛 用途において豊富な採用実績を有します。

特長

- ・中央導体にソリッドワイヤを用い、3重シールド構造とすることで優れた高周波性能 を発揮
- ・耐熱性の高いフッ素系ジャケットを用いることで、高温下での優れた耐電力性能を 実現

ケーブル構造図

ケーブル仕様


ケーブル品番	ケーブル外径 (mm)	質量 (g/m)	最小曲げ半径 (mm)
SFT-316	3.1	26.8	12.7
SFT-142	4.6	53.6	25.4
SFT-205	5.2	62.5	38.1
SFT-304	6.4	99.8	50.8
SFT-393	9.9	187.6	50.8
SFT-226	12.3	349.9	50.8
SFT-600	14.1	357.4	76.2

動作温度範囲:-55℃~+200℃

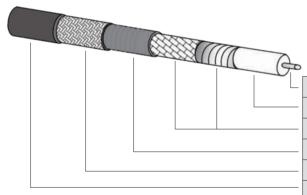
電気特性

ケーブル品番	最大使用周波数 (GHz)	特性インピーダンス (Ω)	伝搬遅延 (%)	静電容量 (pF/m)	シールド効果 (dB)
SFT-316	18	50	76%	89.1	-90
SFT-142	18	50	76%	89.1	-90
SFT-205	18	50	76%	89.1	-90
SFT-304	18	50	76%	89.1	-90
SFT-393	12	50	76%	89.1	-90
SFT-226	8	50	76%	89.1	-90
SFT-600	8	50	76%	89.1	-90

挿入損失

Clarity™

Clarity[™] シリーズは、VNA (ベクトルネットワークアナライザ) にはもちろんのこと、 あらゆる環境下で行われる高周波試験のテストベンチなどに使用することのできる計測 専用同軸ケーブルです。


特殊な構造と特殊材料を採用することにより、捻じれや衝撃、過剰な曲げに耐性を持つ優れた堅牢性、コネクタの接続点へのモーメントを低減するための優れた柔軟性、最大110GHzまでの安定した高周波特性を兼ね備えており、高信頼の高周波計測を提供します。

特長

- ・ソリッドワイヤ中央導体、発泡PTFE誘電体、2重シールド構造による優れた高周波特性
- ・FEPジャケットをステンレスブレイドで覆うことにより、捻りや押し潰し、過剰な曲げに耐性を持つ優れた堅牢性
- ・より高い堅牢性を保証するアーマータイプあり (オプション)
- ・ステンレスブレイドをPTFE繊維で覆うことにより、ケーブルの摩耗を防ぎ、過酷な環境での長期使用を保証
- ・25,000回 (ノンアーマー)、50,000回 (アーマー) の曲げを保証
- ・曲げに対して、極めて安定した高周波特性(低挿入損失、位相安定性能)
- ・ケーブル保護と作業性を兼ね備えた専用ストレインリリーフ
- ・中間コネクタ付きアセンブリのため、インターフェースコネクタを自由に交換可能

ケーブル構造図

•	
中心導体	銀めっき銅
誘電体	PTFE
外部導体	銀めっき銅
アーマー	FEP+SUS スプリング
シールド	SUS
ジャケット	PTFE繊維

ケーブル仕様

ケーブル品番	ケーブル外径 (mm)	最小曲げ半径 (mm)
CLS40	7.4	38.0
CLS50	8.0	38.0
CLS70	5.1	25.4
CLS110	4.7	25.4

動作温度範囲:-55℃~+125℃

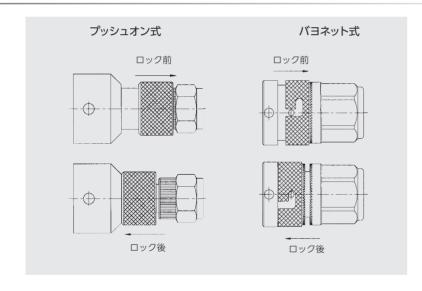
電気特性

ケーブル品番	最大使用周波数 (GHz)	特性インピーダンス (Ω)	伝搬遅延 (%)	静電容量 (pF/m)	シールド効果 (dB)
CLS40	40	50	70%	85.0	-100
CLS50	50	50	70%	95.0	-100
CLS70	70	50	80%	80.7	-90
CLS110	110	50	70%	95.0	-100

挿入損失

Amphenol Amphenol

セルフロックコネクタ


F-15向けに開発されたセルフロックロックコネクタは、緩み止め防止機構を備えたプラグコネクタです。プラグコネクタのカップリングをロックできるため、振動等で緩む心配がありません。

ロックワイヤ取付け作業を無くすことができるため、艤装作業時間の短縮に役立ちます。 また狭い機体内の作業にも適しています。

特長

- ・MIL-PRF-39012適合
- ・SMA型プラグ、N型プラグ、ATNC型プラグ等のストレート形状, 90° ライトアングル 形状, 45° アングル形状に対応
- ・MilTech®シリーズ、MilTech® Lightシリーズ、PhaseTrack®シリーズ等に対応 (中間コネクタを介して、セルフロックコネクタとケーブルを接続)
- ・ロック方式はプッシュオン式 (SMA用) とバイヨネット式 (N用、ATNC用) の2種類

構造

形状

ストレート形状、90° ライトアングル形状、45° アングル形状をラインアップ

中間コネクタは、MilTech®シリーズ、MilTech® Lightシリーズ、PhaseTrack®シリーズ等に使用できるコネクタで、N型やTNC、SMAなどの相手側と嵌合する先端コネクタとケーブルの間に挿入して使用します。

特長

- ·気密性: MIL-T-81490 4.7.15適合 (1×10⁻⁵cc/sec/ft)
- ・先端コネクタは各種コネクタに対応 (ストレートからライトアングル、SMA型からN形など)
- ・ロック機構付きやロータリージョイントも選択可能
- ・中間コネクタの先端にコンタクトを取り付けることで、マルチポートコネクタにも 対応可能
- ・位相調整器付き中間コネクタも選択可能

利点

1) メンテナンス性を大幅に向上

コネクタ付きケーブルで破損するのは主にコネクタです。コネクタはケーブルと強固に結線され、チューブやモールドで保護されているため、コネクタ 単体を交換するのは容易ではありません。ケーブル全体を交換するとなると費用も掛かる上、機体などに艤装しているとケーブルの取外しが困難で す。中間コネクタとN型やTNC、SMAなどの先端コネクタはねじ固定されているため、専用工具一つで容易に先端コネクタを交換でき、時間と費用 を節約できます。

2) 用途に応じて、現場で容易に先端コネクタを変更可能

中間コネクタと先端コネクタを留めているねじ仕様は統一されているため、専用工具一つで先端コネクタの種類を変更できます。例えば、ストレートタイプのN型から、ライトアングルタイプのN型に交換などのように、艤装環境に応じてフレキシブルに現場で対応することが可能です。

3) 中間コネクタとケーブル間で、MIL-T-81490に基づいた気密処理が可能

ケーブルの中央導体や外部導体の腐食 (経年劣化) を抑えることができ、長期にわたり安定した高周波特性を維持できます。特に気圧変化の激しい 戦闘機をはじめとする防衛機体には、気密処理した同軸ケーブルは必須です。

構造

専用治具一つで容易に先端コネクタの取り外しが可能

多彩な形状のコネクタを提供可能

41 Amphenol Amphenol

マルチポートコネクタを使うことにより、MIL-DTL-87104、MIL-T-81490適合の複数の同軸ケーブルアセンブリを一括で着脱できます。過酷な環境条件下で、かつスペース制限の厳しい航空機の機体配線において、優れた高周波性能を発揮します。

特長

- ・周波数: 最大20GHz (M8コンタクト)、最大40GHz (M8Mコンタクト)
- ・MilTech®シリーズ、MilTech® Lightシリーズ、PhaseTrack®シリーズ等が使用可能
- ・アイソレーション:100dB
- ・適用ケーブル径:最大12mmφ
- ・コンタクト形状:ストレート、90°アングル、45°アングルの3種類
- ・スプリング入りコンタクトにより、振動衝撃下で確実な電気的特性を保証
- ・嵌合時、防水性を保証(プラグ/レセプタクルシェル間、コンタクト/シェル間)
- ・バックシェル不要で十分なストレインリリーフ機能を持ったシェル構造
- ・ハンドツール一つで容易に、シェルに対して、ケーブルアセンブリを取付け、取外しが可能
- ・キャビティ毎に異なるサイズのケーブルを同一シェルに取付け可能
- ・ジャックスクリューを用いた嵌合方式、またはガイドピンを用いたブラインドメイトの嵌合方式を採用
- ・耐塩水、耐腐食性ガス2000時間の W/Ni/PTFE合金処理が対応可能
- ・チタン製コンタクト適用可能 (重量減)

利点

距離の長い機体配線では、損失を低減するためケーブル径が必然的に大きくなるため、D38999コネクタなどの#8コンタクトでは対応できません。 一方で、N型やTNCコネクタを多用することはメンテナンス性の低下や、重量増、占有スペース増につながり、今後ますます増加する同軸ケーブルポート数に対してベストな選択ではありません。

マルチポートコネクタはこれらの課題を解決し、さらなる高パフォーマンスを実現します。

1) 大幅な重量削減、省スペース化が可能

マルチポートコネクタは一括で嵌合ロックする機構のため、各コネクタのロック機構 (カップリングナット等) を不要にするため、トータル重量やコネクタ占有面積の大幅低減が可能になります。

2) あらゆる形状、芯数を開発製造可能

樹脂成型部品を使用しないため、お客様の要望に応じて、あらゆる形状、芯数のコネクタをイニシャルコスト無しで開発製造できます。

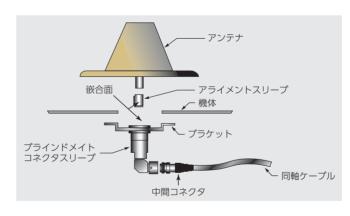
アプリケーション例

ブラインドメイトアンテナシステムは、F-35をはじめとする戦闘機や、C-17などの大型機、軍用ヘリコプターに採用実績のあるアダプタシステムで、コネクタの破損リスクの解消、ならびにアンテナの交換作業時間を飛躍的に短縮します。

特長

コネクタ

- ・スプリング搭載のブラインドメイトコネクタスリーブにより、過酷な振動衝撃下に おいて確実な電気的接続を保証
- ・嵌合コネクタのトルク管理やロックワイヤが不要
- ・機体ケーブルに引き出すための余長、余長確保のためのスペースが不要
- ・アンテナ側コネクタは2.4mm, SMA型, TNC型, BNC型, C型, N型に対応し、最大40GHzで使用可能
- ・MilTech®シリーズ、MilTech® Lightシリーズ、PhaseTrack®シリーズ等に対応



構造

アビオニクスレーダやEWシステムに用いられるブレードアンテナ、スパイラルアンテナ、マルチコネクタアンテナを交換する際、アンテナを機体スキンから取外し、開口から引き出された機体ケーブルとの接続を解除する必要があります。

そのため、機体ケーブルに引き出すための余長と機体内に余長確保のためのスペースが必要です。加えて、損失を最小化するために機体ケーブルは外径が 太いものが多く、一方でアンテナのインターフェースはSMAなどの小型コネクタであることが多いため、着脱時にコネクタを破損する危険性もあります。

本製品を使用することで、機体開孔から機体ケーブルを引き出す必要がなくなるため、機体ケーブルの余長やそのスペースは不要となり、コネクタの破損 リスクが解消できます。同時に、アンテナ交換時間を大幅に短縮できます。

- 1) 既存アンテナのコネクタ (ジャック) に専用アライメントスリーブを取り付けます。
- 2) 機体ケーブルに中間コネクタとブラインドメイトコネクタスリーブを取り付け、機体スキン下のブラケットに固定することで、アンテナを機体スキンに固定します。

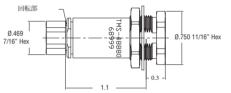
これにより、コネクタを結合できます。

アプリケーション例

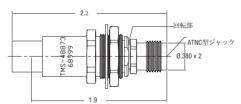
コネクタ

ロータリーコネクタは、航空機の開閉式の扉やパネル、折り畳み式の翼、ヘリコプターの テイルブーム、艦船の稼働式アンテナ、車両搭載の可倒式/昇降式アンテナの可動部 などに使用することで、ケーブルの捻じれを防ぎ安定した高周波特性を維持することが できます。

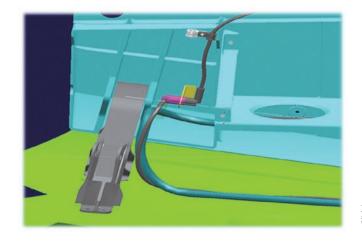
従来のロータリージョイントの約1/2の重量であるため、特に航空機搭載ケーブルの 軽量化に寄与できます。


- ・先端コネクタ型とインライン型の2種類
- ・使用周波数: DC-18GHz
- ·挿入損失:最大0.2 dB (DC~12GHz), 最大0.3dB (12~18GHz) ※回転による変動は最大+/-0.05dB
- ·VSWR:最大1.25:1 (DC~12GHz), 最大1.45:1 (12~18GHz) ※回転による変動は最大1:02:1
- ·耐久性:360°回転× 100万回
- ・MilTech®シリーズ、MilTech® Lightシリーズ、PhaseTrack®シリーズ等に対応 (中間コネクタを介して、専用コンタクトとケーブルを接続)

構造


回転部 中間コネクタ 中間コネクタ

形状


インライン型

先端コネクタ型 (ATNC型ジャック)

アプリケーション例

左図は航空機の機体スキンを示します。 稼働式エリアに、ロータリーコネクタが使用されています。

カタログで使用上の注意事項

- 1) 本力タログの記載内容は2023年6月現在のものです。仕様等の記載事項は改良などのため予告なく変更することがあります。2) 掲載している製品の特性、及び仕様は参考値です。製品のご注文、ご使用に際しては、最新図面、納入仕様書などをご要求ください。3) 弊社製品を使用する装置、周辺機器の設計に際しては、定格電流、定格電圧、使用温度範囲など、製品仕様の範囲内でご使用ください。

Amphenol アンフェノール ジャパン株式会社

- □ 本社・工場 〒520-3041 滋賀県栗東市出庭471-1
- TEL 077-553-8503 (代) · FAX 077-551-2200
- □ 横浜オフィス 〒222-0033 神奈川県横浜市港北区新横浜2-2-8 TEL 045-473-9219 (代) · FAX 045-473-9204